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INTRODUCITON AND SUMMARY

This study is concerned with some special methods of applying
the Hamilton-Jacobil theory of calculus of variations to focket ﬁra-
jectory optimization. The basic theory is presented in Chapter I and
consists of necessary conditions of calculus of vériations.statcd for
the Mayer control problem, followed by the development of Hamilton-
Jacobi theory for such problems. The procedure for utilizing the
decomposition of the Hamiltonian into base and perturbing Hamiltonians
is explained.

In the second chapler a simple Mayer control problem of the
Zermelo navigational problem type is solved to illustrale the theory
of Chapter I. Two methods of splitting the Hamiltonian are compared.

The main problem is treated in Chapter IIT and is that of
minimizing the fuel of a low-~thrust rocket rendezvousing a satellite
in a circular orbit. The fermé in the Hamiltonian involving thrust of
the rocket engine are taken ag the perturbing Hamiltonian. The par-
tial differential equation for the base Hamiltonian»is solved by a
combination of separation of variables and Lagrange's method for
linear equations. The procedure for completion of the problem is
indicated but not carried out, the analysis becoming too complicated
for a closed‘form solution. Traﬁsversality conditions are used to ob-
tain enough conditions to determine the constants of integration.

Some conclusions on the usefulness of the method are given in a Tinal

paragraph.



CHAPTER I
DEVELOPMENT OF HAMILTON JACOBI THECRY FOR MAYER CONTROL PROBLIMS

During recent years much interest has developed in trajectory
analysis of space flight. Present day scientists working on spacc proj-
ects are faced with many problems which are extremely complex in nature.
One of the major problems is the development of "optimal control theory".
Generally the optimal control problems in trajeclory analysis are analo-
gous to the classical. problems of Bolza and Mayer in calculus of varia-~
tions. Ixtensions of the classical theory are made to include control

variables.

CLASSICAL MAYER PROBLIM
The classical Mayer problem in calculus of variations is that of

finding in a clasgs of admissible arcs

vy (6), ty St <t i=1,..0,n
satisfying differential equations

fj(t,y,§)=0, j=1l,0c,m<n
and end conditions

Jk(.tl, y(tl):to:‘Y(to)) = 0, k=1,..., p<ent2

one which minimizes a function of the form



gt oyt ).t Lyt ).

Here, in the arguments of the functions, we use y to denote the set
yl,...,yn and y to denote the set yl,.;,,yn. Similar notations will be
‘used for other variables. The super dot indicates derivative with re-
spect to t. Partial derivatives will usually be denoted by subscript

variables and summation by the tensor analysis device of repeated indices.

MAYER PROBLEM INVOLVING CONTROL VARTABLES
The Mayer problem involving control wvariables as occur in tra=-
Jectory problems may be exvressed in the following Toim.

The problem is to find in a class of admissible arcs
yi(t), uj(t), tySt<t, i=1l,00,m, j=1,...,m
satisfying differential eguations
v, =1 (ty,0)
and end conditions
I (e (e )ty e ) = o, k=1,...,p < 2nt2
one which will minimize a function of the form

g(tl)Y(tl):to)Y(t()))-

In this study the admissible arcs will be those arcs whose ele-
ments (t,y) lie in a given ntl dimensional open region R and whose cone

trol variables u lie in a region U. The devivatives y, are unrestricted.



The end points (tl,y(tl),'to,y(to)) of the admissible arcs lie in a 2nt2
dimensional open space S and y, ¥, u are continuous functions of t.
The given functions fi, ;k’ g are assumed to have continuous partial

derivatives in their arguments to as high as sccond order.

FIRST NECESSARY CONDITION: MULMIPLTIER RULE
The classical first necessary condition involving the Fuler-~
Lagrange eguations can be stated for the Mayer problem with control
variables in the following form. (II)#
THEOREM 1. A normal admissible arc E is said to salisfy the

multiplier rule if there exists a function

H(t,y,u,)) = AT i=1,2,iee,n

57

vhere \'s are Tunctions of t not simultancously zerc and continuous

along the arc E, such that the equations

bi
o

(1) W S y, = H H J=1,000,m

. 2 ’
. i . u,
i Ay J

are satisfied, if the end point conditions J; = 0, k = 1,...,p hold, and

if the transversality matrix

H(to) gy —H(tl) g, —xi(to) + 8 (4 ) Xi(t) + & ()

J J J ) J g
Kt Kt ky; (to) Ky (tl)

is of rank p. Every minimizing arc must salisfy the muiltiplicr rule,.

P

¥Roman numerals in parentheses refer to the bibliograchy at the end
of the thesis.



Solutions of egquations (l) are called extremals, and equations

(1) are called the canonical equations of extremals. They are the

Fuler-Lagrange equations for the problem, and the function H is analo-
gous to the Hamiltonian of mechanics. For definition and discussion of
normal admissible arcs see Bliss (I, pe 213). In trajectory problems

the arcs are usually normal and will be assumed so here.

WETIERSTRASS CONDITION
The Welerstrass condition for the Mayer control probléﬁ can be
stated as follows. (II)

THEORTM 2, Along the minimizing arc E, the inequality
H(t:Yﬂu—ﬁ) < H(t:Y;')\Ju)

must hold at each element (t,y,\,u) of E for every T in U. Thus
H(t,y,x,u) is a maximum with respect to the control variables for a mini~
mizing arc, for which reason this condition is often called the Maximum

Principle.

ELIMINATION OF CONI'ROL VARTABLES

An arc along which the determinant I # 0 is said to be

Hu

“ 3

non-singular. In the proofs to be considered it will be assumed that all

arcs are non-singular. The equations Hu = O can then be solved for the
3 .

control variables in terms of multipliers and state variables. The con-

trol variables can then be eliminated from the Hamiltonian, This will

be supposed done, and the Hamiltonian will be writien as

B (t,0,0) = I (t,7,u(t,y ) ).




T4 follows that the canonical egualions of the extremals can

be expressed in terms of u*, For, if
H = o, j =l,::;,m
of the set of equations (l) can be solved for

then H® = H + Hu u,
s

H’ = H + H u .

Xl li uj axl

Since Hu = 0, it follows that

J
Y = H and HY =H
yi y:'L >Li i
. E3
oxr V. = H =B
: Xi Kl
and T -
L y.L

Hereafter H* 411 be denoted by H because of the equivalence of two

Hamiltoniang.

THE HAMITITON-JACOBI EQUATION
The Hamilton-Jacobi theory'involves the formulation of the
Hamilton-~Jacobl equatlion, which is a partial differential equation of
first order. The importance of the theory in calculus of variations is
Based on the relation between the Hamilton-Jacobi equation and the |

Fuler-lagrange equations, which is established by severall theorems
O [ &3 2



which follow.

The relation
(2) S‘t + H(t;Y;‘?y) = 0,

is called the Hamilton-Jacobi equation. The equation has dependent

variable S and n+l independent variables t,yl,...,yn. The complete solu=-
tion of (2) will have ntl arbitrary constants. However, one is additive
and is of no importance here, so we shall consider a solution with n inde~
pendent constants, no one of which is additive, to be a complete solution.
THEOREM 3. Let the Hamilton Jacobi equation (2) have the solution
S = S(t,yl,...,yn,al,...,ﬁﬁ) depending on m (< n) parameters al,...,qm.

Then each derivative Sa is a first integral of the canonical Fuler equa-

tions system

that is, Sa. = constant along an extremal,
J
JACOBL'S THEORF¥L
THEOREM 4. Let S(t,yl,...,yn,Ofl,...,O!n) be a .complete integral
of the Hamilton Jacobl equation (2), that is, a solution depending on

iyh"/: >

Also let B ,...,B be n arbitrary constants. Then the functions
1 n

n-paramcters O ,...,Oh and having the n by n determinant Sq
1

(3) o=y (0 e @B B ), i=1,...5n

defined by the relations SO = Bj, together with the funclions xj == 5,
L. _ R vy
i

conslitute a general solution of the canonical system



> i::l"oo}n'
For proofs of theorems 3 and l see (III, p. 90).

HAMILTON JACOBI PERTURDATION THEORY

In celestial mechanics the path of a planet is disturbed by the
presence of other heavenly bodies. This disturbing force is proportional
to the mass of the disturbing body, which is very small compared to the
mass of the sun. The Hamiltonian is expressed as a sum of two parts.

The one which corresponds to the motion of the planet without the dis-
turbing influence is called the base Hamiltonian, and the one corresponde-
ing to the disturbing factor is called the perturbing Hamiltonian.

The low thrust roéket problems in trajectory analysis can be
treated on the basis of perturbation theory. The thrust of the engine
is considered as the disturbing factor. This helps to avoid the complex-
ity of the non-linear differential equations in the solution of the prob-
lem,

The following theorem shows how to oblain a complete integral of
order n of the Hamilton-Jacobi equation for the base Hamiltonian in case
it involves fewer than n n\'s (VII, p. 29).

THEOREM 5. Let I ('t,yl,...,yn,xl,...,}\n) be the Hamiltonian for
a dynamical system. Let HO = Ho(t,yl,..;,yn,xl,...,xk), vhere k < n, be
the base Hamiltonian and let S (t,yl,...,yn,al,...,ﬁi) be a solution of
the Hamilton-Jacohi equation for HO depending on k independent parameters

(al""’ak) with S /4 0, i,j =1,2,...,k. Then

04
Y4 3




n

o

S‘)‘— = S(t,yl’--a’yn,al’-oo,ak) + Z—‘ aiyi)

i=k+1

where Qh) are independent pavameters, is a complete solution

Q%+l""’
of order n for the base Hamilton-Jacobi equation.
From Theorem 4 it follows thatﬂ
() B; = S.Z;i, A =8 =1,000,m.
We solve these equations.for y's and A's in terms of O's and B's, thus
vy = yi(a,ﬁ,t) and xi = xi(a,B,t), and substitute theose values in the
perturbing Hamiltonian, say Hl. Now Hl is expressed in U's and RB's as
variables.
On considering S to be a generating function for a canonical
transformation with O's and B's as new variables, it follows that the

new Hamiltonian is S, + H, (111, p. 79). But

+H=8 +H +H ds8 +H =0
St t IO 12 an + o

when S is a complete integral of the Hamilton-Jacobi equation for the
base solution. Hence the H is the Hamiltonian for the total problem

1
in terms of the variables Oﬁ, Bi; and the canonical equations for extre-

mals in these coordinates are

&_ =H 5 é_=:~H .
&
i lBi i 1%

The solution of these equations gives the extremals for the problem with

2n constants of integration (VII, p. 27; VII, ». 137). By the use of the
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set of equations (It) we can express the trajectory in terms of y's and
t. This theory can be extended to splitting the Hamiltonian into more

than two partis.



CHAPTER IXI

SOLUTION OF A SIMPLE MAYER CONIROL PROBLIM

BY HAMITTON JACOBI THEORY

The main purpose of this chapter is to illustrate the solving
of calculus of variations control problems by the use of the Hamilion
Jacobi theory developed in the previous chapter. The simple problem
treated here is to some extent analogous to the major problem of Chan-
ter III. Two methods of developing the solution are given. This prob-
lem may be viewed as a particular case of Zermelo's problem for navigate

ing ships. The two dimensional rectanzular system of coordinates is
o (]

used.

STATIMENT OF T1HE PROBLE
Consider a body moving on a level fluid surface which has veloc-
ity components px and gy along the cartesian directions, the body having
velocity relative to the fluid of constant magnitude V generated by the
thrust of the engine. It is required to minimize the time in going from
one given point to another.

The equations of motion are

e

= px + V cos O,

= qy +V sin C,

e

vhere V, p and q are constants and the control variable ¢ dis the angle

1L
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between the x-axis and the direction of the thrust.

THE HAMILIONTAN

The Hamiltonlan for this system of equations is
H= (px +Vcos @)+ (ay + V sin @),
2

where xl and )} are multipliers and are functions of t, not simultane-
2
ously zero.
By theorem 2 of Chapter I, for final timc to be minimum, H must

be maximum. Hence

(84 oo = T
therefore H o= Vsin &+ ) Vcos&=0,
a 1 2
A . A Y A
or tan O = 3fi~ and sin 0= "__ "2 - ° cos O = 1 .
1 02 +22) +V (52 +33)
- T2 S T
Also Haa = »xl V cos O - Xz V sin @ <0,

and inequality holds if and only if the positive sign is considered
before the radical in the values of sin @ and cos Q.
When @ is eliminated, the Hamiltonian assumes the following

form
He= A px + ) qy + V\/’(x2 + 7)),
1 2 1 2

==+ H
1 o]

vhere H = V'JIXE + %) ana H_ = ).px + A ay.
o 1 2 1 1 P2



SOLUITON OF BASE HAMILTONTAN

Taking Ho as base Hamiltonian, the Hamilton-Jacobi equation for

S + v(s2 +52) = 0.
t X Yy

A method of separation of variables can be used. (VI, Chapter XII)

Assume that the solution of the above equation is
S=5(t) +8 (x) +8 (y),
1 2 3
hence as /at + v «/Z(dsz/d_x)g + (as_/ay)?) = o.

Let S /dx = O and dS /dy = & , wvhere @ and @ are parametric
2 1 3 2 1 =
constants. This is possible since x and y are not involved in the equa-

tion explicitly.

Now 4as /dt oo V-Jkaa + az)’
hi 3 o
and hence S = - Vt~f1a2 + Q2),
l 1 o
Therefore S=0x +0y = Vi J(o? + a?).

:

By Jacobi's theorem (Theorem 4, Chapter I) the arbitrary f's and multi-

pliers )\'s are given by Bi = 5 and Xi =5

(04
i Vi
Therefore B = x = VX t/f.OQ + 0?),
1 1 b 2
)
B =y - Vo tN(e? + 0?),
2 2 h 2
A, = A, A o= O

1 1 2 2
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SOLUTION OF PERTURBING HAMILTONIAN
Using the above set of equations, we can eliminate x, y, A and
1

A and express Hl in new variables:
2
H = po B +q@dp + Ve (p + g )N (07 + 07),
1 1 22 1 2 1 2

The canonical equations for H are
1

5 = + Vi (po?® + - q) ao?)/(® + a2)®/?
B, =B, (p X (2p ~ q) ! 2)/( . 2) ;
3 - + Ve ((2g - ) @ O + q0®)/ (02 + o2)/?
B, =B, ((eq - p) %t 2)/( N 2) )
A = -pQ

N pl’
& :—qa,

2 P2

The last two equations of the above set give
(2) d =ce , Of::ce,

where ¢ and ¢ are constants of integration, and 1the first {wo equations
k] 2

reduce to

. o &% (pe? & 4+ (2p - g)e2™MY)
Bl - pBl =V 2 1 Z
- ; et 3/2
(c? 22 o2 zeaty /2
1 2

St e Fl(t),

. cr'e-qt((?zq _ p)c2-e-2p't + qcze.-;?qt)
B, =af_ =V -2 e 2 t = F (&),
o =50t woa4\3/2 2
(2 F o2 gty
2

which are linear differential equations and have the solutions
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ptr [ =pt_ .\ \
6=e(Je‘Fkt)dt+c),
1 : 1 3

- at -t
.62— e (fe F2(t) at + c4).

By the use of the equations in set (1) and (2) We can express

t, [ =pt . -2t -
() x = & (Jpep Fl(t) at + Cs) +V cleptt/fkci i ci ezqt)

y = eqt(b/ngtF2(t) dt + 04) +V cgéqtt/chi 52Pt+ c? 52pt),
2

which are the parametric equations of the trajectory. Also from (1)

and (2) we can evaluate the multipliers in terms of +

-pt -at
ll— = C ep = d
(&) Kl 1 s xz c2 e*.

The end point values of x and y can be used to evaluate the con-
stants of integration in the solution of the problem. If the initial
and final points of the trajectory nove on some curves or surfaces, then
the transversality conditions can be used for evaluation of constants of

integration.

A PARTICULAR CASE OF THE PROBLEM
When the velocity of the fluid is proportional to the_distance
from the origin, then p = q.

In this cése Wwe get the multipliers from equations (h) as

A = oC Ept, A o= C Ept,
1 RE 2 2
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and the equations of the trajectory are deduced from the equations (3)

to be

P t 2 2
X = -V \/— -+
C (S C / p (C c ) 2

pt 2, .2
c, e \' 02/ P J1cl cl).

e
1]

It is easily verified that the above equations satisfy the Buler-Lagrange
equations obtained from the Hamiltonian in its original form. Assuming
that an optimum trajectory exists, it is given by these equations with
the constants determined by the initial and end conditions. Flimination

of t gives the geometrical trajectory as the straight line
cx~-cy=Vi(ce =~c J(cZ + ¢? .
4 sy ( 23 1C4) /N b 2)
A SECOND METHOD OF SOLUTION

The second method of solving the problem (similar to that used

in Chapter III) involves expressing the Hamillonian H as H0 + Hl where
H = + nd  H = V(B2 +23).
o= APXtAay  a ) (] xg)
Taking HO as base Hamiltonian, the Hamilton-Jacobi equation is
+ S -+ = 0.
St X . ay Sy 0
Let us assume that the solulion of the above equation is

S =8 (t) +8 (x,y),
i 2

hence dSl/dt + px 38 /3ax + qy 3S /3y = 0.
2 2
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Since t is not involved explicitly, we can put dSl/dt = ~al in the equa-

tionj hence

(5) px 3S /dx + qy 3S [dy = o .,
2 . 2 1

Its subsidiary equations are (VI, Chapter XII)

ax dy as

———r = —_—— -— —_———

pX qy o

Considering the first two terms of the subsidiary equations and

integrating them, we get

vhere a is an arbitrary constant,.
The last two terms in the subsidiary equations give
(04

T =
- q log y b,

where b is an arbitrary constant.
The general solution of equation (5) is

o

q
S -1 S
¢ (S 4 koe v, . ) =0,
where ¢ is an arbitrary function.
One such solution is
o a
(5~ 21 10gy) - X =0,




18

where & is a parametric constant, which gives
2

o q
8§ = A log y + O o,
2 a 2 yb
Hence a complete integral of equation (5) is
0
S=0t + —L 1ogy +a xt
1 q 2 yp

By Jacobi's theorem, arbitrary B's and multipliers )\'s are evalu-

ated as follows

38 1 .
Bl = 30 = —a’ log y - 1, ~also y = e(Bl t)q;
1
' q 1/q (B, + ¢
as X q . t)p
B, = 30 "7 yP also x =p ""e * )
- g-1 _-p =1/a ~(B + t)p
Xl 3y = qaé X y or xl = qO; 62 e "1 73
oS al -(p + 1)
= o= A = Ly q P 1
)\2 ay - q Y P =3 Xy
- (6. +t)
- 1 - q
or = —— L
A ( q P 52)6 1 .

SOLUTION OF THE PERTURBING HAMILTONTAN
The perturbing Hamiltonian Hl can be expressed in series by using
the binomial expansion. We consider only the first two terns, assuming
Al to be large relative to xz. Hence,

H =V + 27 /o).
. O +a2 /2)
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Fliminating X and A and geliing H in terms of new variables Q's and
1 1

B's give
H = VA (q@ B + 2™ %% 8™ (@ - gpa p )
. CE 19 (@ - apap )7),
- -+ ) -
where A=ce (61 &) and B = 5; 1/q,

The canonical equations are
. — ety e e » 2
a = -pVA (g@ B + 2719730 287 (@ - pgd
, = VA (q@ B + 277q P (@ -pa2p )7),
& = VA (@ BR™ + 27380 1B 7L (0 = pgtp )
2 2 2 2 ‘ S 2 2

ta 7 (@ - pgop ) ),

w
1l

Jq 3™t (0 - gpap )A
q o (@ - apap )A,

e
i

VA (aB - q ZpB" 1 g™t (0. - gpo
VA (qB - g "pB™t g (0 - qp B )
T e e e 2
- 271q7%a7EB™ (o - gpa g )7),
2 iy 2 2

The above four differential equations determine the optimum
trajectory in terms of the neﬁ variables Oﬁ, 6i and four constants of
integration, which would be evaluated by use of the end point conditions.
The completion of the problem by this method is much more complicated
than by the Tirst method, so we do not carry the work further here. This
problem illustrates that the choice of method of splitting the Hamiltonian

is important. Other considerations, such as the magnitude of the thrust
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may also influence the choice of how to split the Hamiltonian.

The problem of the next chapter, like the one in this chapter,
has a Hamiltonian consisting of ratiqnal terms plus a term involving
the square root of a gquadratic in x's.!mThe thrust occurs only in the
radical part. Since our rendezvous problem involves low thrust, it
is desirable to choose this part as the perturbing Hamiltonian. Hence
the procedure will be similar to that of the second method in this

chapter.



CHAPTER ITX

RENDEZVOUS OF A ROCKED TO A SATELLITE MOVING IN

CIRCULAR ORBIT

A rocket moving under the law of gravity and the thrust of the
engine is to rendezvous with a satellite moving in a circular orbit
about the earth. The variable angle of the thrust, called the control
variable, is a function of time. It is desired to find the ecquations
of the path of the rocket that will require the least zmount of fuel.
Investigation of this problem was suggested by William E. Miner who
has developed extensive applications of perturbation theory to rocket
trajectory probleums, (V).

| The method used here is that of Hamilton-Jacobi theory for per=
turbing planetary motions. The Hamiltonian is formulated by multipliers

and the first order differential equiations of motion of the rocket.

ASSUMPTIONS

The following assumptions are made involving the physical condi-
tions of the problem.

The path of the rocket is assumed to be in a plane, and hence a
two dimensional polar coordinate system 1s used, with origin as the cen-
ter of the earth.
| The rocket is considered as a particle éf variable mass.

Air resistance is assumed to be negligible.

21
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Earth is assumed to be a perfect sphere and not rotating with

respect to the coordinate system.

Thrust magnitude is considered proportional to the rate of flow

of mass and 1s assumed to be constant. =

Change in thrust direction is assumed to be instantaneous.

The circular path of the satellite is coplanar to the path of

the rocket.

NOTATTIONS
Independent time variable
Initial time
Final time
Variable radius vector
Variable angle made by radius vector with the initial
line of the polar coordinates system used
Velocity along the radius vector
Velocity along the perpendicular to the radius vector
Mass of the rocket
Rate of flow of mass
Constant thrust magnitude of the engine
Variable control angle made by the thrust with the
radius vector
Lagrange multipliers in Hamiltonian
Gravitational constant

Radius of the earth
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Rs Radius of the circular orbit of the satellite with
center at the origin
W Uniform angular velocity of the satellite

6 Angular position of the satellite at time t

EQUATIONS OF MOTION
From figure 2, the egquations of motion can be expressed as

(1v, Chapter IV)

F - o7 =-k/r% + (T/m) cos,

r8 + 216

b

(T/m) sinc,

The radial and tangential velocities u and v are given by

Hence we can express the above equations of motion as first order differ-

ential equations in the following form,

(1) | 4 = Ve/r - k/r2 + (T/m) cosQ,

<o
b

~uv/r + (T/m) sin®,

He
It
o

Qe
1

- v/r,




2l

GEOMETRY OF THE PROBLEM

Position of satellite and
rocket at rendezvous

Path of the satellite

Fig. 1

Jnitial line
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The initial and final end conditions of the trajectory can be

expressed in the following form

(2) Ji =t =0, |

J, = u(to) = 0,

Js = v(to) = 0,

J), = r(to) - R =0,

J5 = G(to) = 0,

J¢ = u(tf) = 0,

I, = v(tf) - Rw =0,

Jg = r(tf) -~ R, =0,

J = O(tf) -wt -0 =0

I = m(tf) - m, =0,

vhere Rl’ R2 and m, are constants. |
Minimizing the mass of the rocket at the time to is equivalent
to minimizing the consumption of the fuel and also equivalent to the

minimization of the time of the transit of the rocket. This can be

expressed as
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FIRST TRANSFORMATION OF THE VARIABLES
The first set of transformed coordinates are obtained from the
Lagrangian L, for the unit mass and the two body problem without thrust.

Thus

L = (1/2)(52 + rzéz) + k/r
and we define
u = 3L/t and w = dL/30
Hence, u = v and W = 120 = rv.

The equations of motion in transformed variables are

(3) 4= ((w3/r®) - x/r®) + (T/m) cosq,

1l

w = r{T/m) sind,

He
i
c
A"

DOe
il
=
~
H
N
[

ELTMINATION OF CONTROL VARTABLE
BY WEIERSTRASS CONDITION

The Mamiltonian Tor set of equations'(B) is
H = xl (w®/r® = X/r? + (T/m) cost) + Xz (r(T/m) sinx) + xsu + xdw/rg - cxs

where kl, xz, xq, X4 and Ks are multipliers and are functions of t, not
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sirmultancously zero.

From the Welerstrass condition for maximum H,

H, =0 and Hog < 0

hence Ha = - xl(T/m) sinQ + x2r(T/m) cos® = 0O,

or tand = v} /A and sin® = vy / +V(OF + r2)3), cos¥ = x / +J (02 + rA3).
2 ™M 2 - 1 2 1 = 1 2
Also Hyg = = A (T/m) cos® = % r(T/m) sin® <0
1 2 =

and this holds if and only if the positive sign is considered before the

radical in the valueg of sin® and cosl.

Elimination of & gives
= 23 . 2 + + 2 + 1 24 2.2
H %l(m /x k/r?) A U x4w/r e (T/m)\[,-()\l r.xg),
=H *H,
h H = 2 /1.8 - 2 + + 2 - d H - A 2 + 2,2
vhere H_ xl(m /r k/r%) AU x4w/r ch, snd H, (T/m}&il r xz),

Considering Ho as the base Hamiltonian, the Hamilton-Jacobi equa-

tion for H is
o
() as/at + @3/ - x/r2)38/du + u 38/or + (w/rZ)3S/30 - ¢ 3S/am = O.
Let its solution be
Q.- -4 E - N
S = Sl(t) + 82(0) F Ss(m) k S4(u,r),

then the Hamilton-Jacobi equation assumes the form
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dSl/dt + w2/ - k/r2)884/au + u as4/ar - (w/rg)dsz/de - c dSS/dm =0

2

which does not involve t, 0 and m explicitly.
Henc as /dt = & ds /dae = & ds /dm = &
enee 1/ 1’ 2/ 2’ 3/ 3’
where al, O;, Oé are parametric constants.

The Hamilton-Jacobi equation can now be written as
() (w®/r° - x/r®) 384/3u + u 884/ar =cl -a -0 w/r=,
: 2

which is in the form of Lagrange's linear equation (VI, Chapter XII),

and its subsidiary equations are

du dr as
4

2.8_ 2:_=a_a_a 2 °
W /r k/r u c . 8 2w/r

(6)

Considering the first subsidiary equation, we have
u® - ok/r o+ w2/r? = -aZ,

which we write as

where ~a°

is a constant of integration with the sign chosen so as to
give a periodic shape to the trajectory.

On substituting for u from above in the last subsidiary equation,

we have

ar/A (~a2r® + okr - w2) = 1as /(c@ - )r? - o
rN (~a®r ro-we) = 4/(c A l)r A
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the ambiguous sign of the radical being absorbed in the arbitrary con-

stants & , & , @,
Y 27 3

On integrating, we have

o2

5, - ((ca - a ) (w/ (~a®r® + 2kr - w2)7a2 + (x/a®)sin" Y (a®r-k) N (k®-w?a?))

- 052 sin * (kr - W2)/I\/—(k2 - w2a2) = b,

vhere b is a constant of integration;

ca - kr 0P rPakr-w?
or 84 -( &3 (-ur + o sin t
P42k -uZr? J(~Z42kr-uZr?) Jkkr—w2)2+u2r2w2)
- 2

Jk(kr"wg)2+ wBrfu®)
If we define
X = —w? + 2kr - u2r2,
Y = Jk(kr - w2)2 + uir w?),
we can simplify the above equation to
S4 —(((cOg - Gl)/X)(—ur + (krAX)sin™t X/Y) - O; sin”t (kr~w")/¥)= b,
or S4 - g = b,
The general. solution of (6) will be

(P(f;Sé"g):O;
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where ¢ is an arbitrary function.

It follows that

J

S = +df +Q
g . S

4

where @ and ae are parametric constants, is a solution and may be taken
4
as a complete integral of equation (5).

Hence an integral of Hamilton Jacobi equation (L) is

S = Glt + 029 + Ogm + ( ((cOg - al)/X) (-ur + (kr/Jk) sin™?t X/Y)

- 02 sin”} Ckr - wg)/Y) - 0; X/r2,

the additive constant as being dropped as explained on page 7. The com-
plete integral of Hamilton-Jacobi equation (4) by Theorem 5. Chapter T,

is
%
S" =8 +auw.
5

By Jacobi's theorem we have BS*/aai = Bi with arbitrary Bi and

hence we get

(7) B o=t - (1/%) (~ur + (krAX) sin™ (X - kr)/Y),
p, =0 - sin”t (o - w3)/Y, |
p, = m + (c/X)(-ur + (xrANx) sin™ (X - kr)/Y),
B, = =X/r?,
B =w
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Also by Jacobi's theorem, the multipliers xl, A Ks’ Ao, A
2 4" s
are the partial derivatives of s* with respect to u, v, r, 0, m, respec-
tively. On letting Z denote k% + 64 Bi, we Tind the results, after some

simplification, to be as follows:

- - - - 2.2 - 2
(8) A, = (2/64)(6053 al)(ﬁl thu + ((CO‘3 O‘l)/B4r )(u({34(61 t)r2+ur)
2 2 2 2
+ B4r) - (k/r64)(rk —25554-k55)/z + O;BS(kr~BS)/rZ +2Q u,
- - ot 2 - - . 2.3
A, = 2:35(c<13 al)(Bl t)/r B, * (coza Oél)ss(r54(al t)*u)/B‘;
- k(2B r22% + (uPkr-p2) (38 +82)B VurA (82r2-p (x2-1) (u2+82)Z
s 5 4 5 5 4 4 S
2, _p2 2,n2 33 7 . 2 .
+ 0‘2(6521" F(kr 65)(641‘ +BS)65)/u1" BZ 206455/r Fa,
14 = (12,
A = %o

Xs can be computed the same way as other \'s, but we do not need it

for our H .
3
From these sets of equations (7) and (8), as explained in first
chapter, we need to solve for xl, xz and r in terms of B’s; a's and t.
We 1hen substitute these values in the perturbing Hamiltonian HluJ(xi+r2xZ),
to obtain an expression in Q's, B's and t, say Hl(a,ﬁ,t). The canonical

equations for this Hamilionian Hl are

Bi = - aﬂl/aoa L= aHl/aBi-
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The solution of these equaﬁions gives the final trajectory of the rocket
in terms of Q's and B's and ten constants of integration. It would be
difficult, if not impossible, to get the solution in closed form. We
conclude our study of the problem without attempting approximation pro-
cedures for its completion.

The constants of integration are determined by the initisl and
the final end conditions of the trajectory and the transversality condi-
tions at the final point. By Theorem 1 of Chapter I, the transversality

matrix in terms of the original variables is

H(e))  -H() () () () -, (e,
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 -® 0] 0] 0 0
0 0 0 0 0 0

(e )4 A, (tg) ) (e r, (ep) A (t,)

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

This matrix has eleven rows and twelve columns and must be of rank ten.




This gives the following conditions,

7\5(%’0) = l)
H(tf) = wx4(tf).
The ten initial and Tinal end conditions and the above two conditions

are enough to determine the ten constants of integration and the initial

and Tinal times.

CONCLUSTIONS
Although the method given here for obtaining a complete integral

of the base Hamilton~Jacobi equation for the rocket trajectory problem
is simple, involving only a linear partial differential equation, it
leads to complicated involvement of u and r in equations (7) and
(8). This mekes it very difficult to obtain the Hamiltonian Hl as a
function of O&, P;» and t. Also it would seem difficult to devise

a computer programming method that would be any improvement over other
knovn methods. Further stﬁdy of canonical {ransformation theory would
seem desirable in an effort to obtain a coordinate system in which H

would be simpler.
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